PROPORTIONNALITE, VITESSES et ECHELLES

I – Proportionnalité

Définition

Deux séries de valeurs sont dites proportionnelles si pour passer de l'une à l'autre on multiplie toujours par un même nombre appelé le coefficient de proportionnalité.

Exemple

Volume de sans plomb 95 (E10) en litres	15	23	12	
Prix en €	22,80	34,96	18,24	↓ × 1,52

Propriété admise

$$a imes rac{b}{a} = b$$
 Pour passer du nombre a au nombre b, on multiplie par $rac{b}{a}$.

 $imes rac{b}{a}$ $imes rac{arriv\acute{e}e}{d\acute{e}part}$ $imes$ $imes$

Exemples

Comment déterminer si un tableau correspond à une situation de proportionnalité ?

- On calcule, séparément, les quotients qui permettent de passer d'une valeur à la valeur correspondante.
- 2°) Si les quotients sont tous égaux, c'est une situation de proportionnalité. Sinon, cela ne l'est pas.

Exemple 1

Masse de fraises en kg	3	5	7
Prix en €	5,10	8,50	11,90

Pour passer de 3 à 5,1 on multiplie par $\frac{5,1}{3}=1,7$ Pour passer de 5 à 8,5 on multiplie par $\frac{8,5}{5}=1,7$ Pour passer de 7 à 11,9 on multiplie par $\frac{11,9}{7}=1,7$

C'est bien une situation de proportionnalité de coefficient 1,7.

Exemple 2

Masse de poires en kg		3	5	7	
Prix en €		4,80	8,00	11,00	
$\frac{4,80}{3} = 1,6$	8,00	= 1,6	- -	11,00 7 »1	,57

Ce n'est pas une situation de proportionnalité.

Exemple 3

$$\begin{array}{|c|c|c|c|c|c|}\hline 9 & 15 & 18 \\\hline 12 & 20 & 24 \\\hline \\\hline \frac{12}{9} = \frac{4}{3} & \frac{20}{15} = \frac{4}{3} & \frac{24}{18} = \frac{4}{3} \\\hline C'est une situation de proportionnalité. \end{array}$$

Propriété des produits en croix - admise

Si
$$\frac{a}{b} = \frac{c}{d}$$
 alors $a \times d = b \times c$ Si $a \times d = b \times c$ alors $\frac{a}{b} = \frac{c}{d}$

Exemple 1

On veut comparer les fractions $\frac{65}{91}$ et $\frac{115}{161}$ On calcule séparément les produits en croix : $65 \times 161 = 10465$ et 91×115 = 10 465 donc $65 \times 161 = 91 \times 115$ donc $\frac{65}{91} = \frac{115}{161}$

Exemple 2

On veut comparer les fractions $\frac{7}{13}$ et $\frac{9}{17}$

On calcule séparément les produits en croix : $7 \times 17 = 119$ et $13 \times 9 = 117$

donc $7 \times 17 \neq 13 \times 9$ donc $\frac{7}{12} = \frac{9}{17}$

Exemple 3

Trouve le nombre manquant $\frac{5}{4} = \frac{7}{?}$

Les fractions sont égales donc les produits en croix sont égaux

 $5 \times ? = 4 \times 7$ On effectue les produits en croix

 $5 \times ? = 28$ On simplifie chaque membre

? = 5.6 On divise par 5

Astuce

S'il n'y a qu'une valeur inconnue, on multiplie les deux quantités qui « touchent » celle qu'on cherche puis on divise le résultat par la quantité qui est « en face ».

Exemple 4

$$\frac{5}{4} = \frac{7}{a} \qquad \qquad \frac{5}{4} = \frac{b}{3} \qquad \qquad \frac{c}{4} = \frac{7}{2} \qquad \qquad \frac{5}{d} = \frac{7}{3}$$

$$a = \frac{4 \times 7}{5} = 5,6 \qquad b = \frac{3 \times 5}{4} = 3,75 \qquad c = \frac{4 \times 7}{2} = 14 \qquad d = \frac{5 \times 3}{7} = \frac{15}{7}$$

$$\frac{3}{4} = \frac{b}{3}$$
$$3 \times 5$$

$$a - 2$$
 $c = \frac{4 \times 7}{2} = 14$

$$d = \frac{\overline{d}}{3}$$

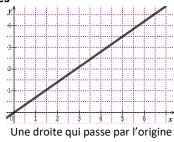
$$d = \frac{5 \times 3}{7} = \frac{15}{7}$$

Propriété – admise

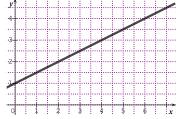
La représentation graphique d'une situation de proportionnalité est

- une droite
- qui passe par l'origine du repère

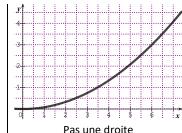
Exemples



Situation de proportionnalité



Une droite qui ne passe pas par l'origine

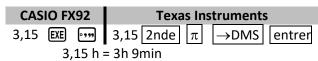


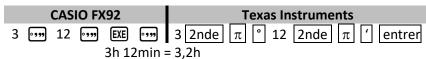
Pas une situation de proportionnalité

II - Vitesse, distance et temps

3,4h
$$\neq$$
 3h 40 min
3,4 h = 3h + 0,40h = 3h 24min
 \times 60

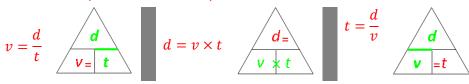
Conversion avec la calculatrice





Propriétés admises

Si d est la distance, t le temps et v la vitesse moyenne on a alors



Exemple 1 : recherche de la vitesse moyenne

Clément roule pendant 3h et parcourt 183km. Quelle est sa vitesse moyenne?

Calculons sa vitesse moyenne

Méthode 1
$$v = \frac{d}{t} = \frac{183}{3} = 61$$
Méthode 2

Distance Temps
$$183 \text{ km} \quad 3h$$

$$? \quad 1h$$

$$? = \frac{183 \times 1}{3} = 61$$

Sa vitesse moyenne est de 61 km/h

Exemple 2 : recherche de la distance parcourue

Mathieu roule pendant 3h à 43 km/h de moyenne. Quelle est la distance parcourue?

Calculons la distance parcourue

La distance parcourue est 129 km

Exemple 3 : recherche du temps de parcours

Pauline marche pendant 12km à la vitesse moyenne de 4,5 km/h. Quel est le temps de parcours ?

Calculons le temps de parcours

Méthode 1
$$t = \frac{d}{v} = \frac{12}{4,5} = \frac{8}{3}$$
Méthode 2

Distance | Temps | 4,5 km | 1h | 12 km | ?

$$\rightarrow \div 4,5$$

$$? = 12 \div 4,5 = \frac{8}{3}$$

Le temps de parcours est de $\frac{8}{3}$ h = $\frac{2h}{40}$ min

Exemple 4 : conversions de vitesse

Convertir 135 km/h en m/s

Distance	Temps		
135 km	1 h		
=	=		
135 000 m	3 600 s	↓÷3 600	
?	1 s	V → 3 000	
? = 135 000 ÷ 3 600 = 37 5			

135 km/h = 37,5 m/s

Convertir 15 m/s en km/h

Distance	Temps	
15 m	1 s	↓×3600
? m	3 600 s	√ × 3600
=	=	
? km	1h	

? = 15 × 3600 = 54 000 m = 54 km 15 m/s = 54 km/h

III - Ratios

Remarque

Deux nombres a et b sont dans le *ratio* 2 : 3 si $\frac{a}{2} = \frac{b}{3}$ | Trois nombres a, b, c sont dans le *ratio* 2 : 3 : 7 si $\frac{a}{2} = \frac{b}{3} = \frac{c}{7}$

Exemple

$$\frac{2}{3} = \frac{10}{15} = \frac{8}{12}$$
 donc 2, 10 et 8 sont dans le ratio 3 : 15 : 12

$$\frac{10}{12} = \frac{5}{6} = \frac{15}{18}$$
 donc 10, 5 et 15 sont dans le ratio 12 : 6 : 18

Exemple 1

La vinaigrette est faite avec de l'huile, de la moutarde et du vinaigre dans le ratio 6 : 1 : 3.

On veut utiliser 2 cuillers de moutarde.

Combien faut-il prévoir des autres ingrédients?

Je calcule la part des ingrédients

Ingrédient	Huile	Moutarde	Vinaigre	
Ratio	6	1	3	
Nombre de cuillers	?	2	??	^ 2

Le coefficient de proportionnalité est 2 donc il faut $2\times 6 = 12$ cuillers d'huile et $2\times 3 = 6$ cuillers de vinaigre.

Exemple 1

La vinaigrette est faite avec de l'huile, de la moutarde et du vinaigre dans le ratio 6 : 1 : 3.

On veut Obtenir 5 litres de vinaigrette.

Combien faut-il prévoir de chaque ingrédient ?

Je calcule la part des ingrédients

Ingrédient	Huile	Moutarde	Vinaigre	Total	
Ratio	6	1	3	10	_
Volume	?	?	?	5 litres	*

Le coefficient de proportionnalité est 0,5 donc il faut $0.5 \times 6 = 3$ L d'huile et $0.5 \times 1 = 1.5$ L de moutarde et $0.5 \times 3 = 1.5$ L de vinaigre.

> × 0,5

IV - Echelles

Remarque

Pour représenter la réalité, il peut être nécessaire de l'agrandir ou de la réduire.

S'il s'agit d'un agrandissement, on multiplie les distances par un nombre supérieur à 1.

S'il s'agit d'une réduction, on multiplie les distances par un nombre entre 0 et 1.

Réduction

En bas à gauche, il est indiqué que l'échelle est de 1 : 10 000 ; on devrait écrire $\frac{1}{10.000}$.

Cela signifie que pour passer de la réalité à la carte, on a multiplié les distances par $\frac{1}{10.000}$.

Par exemple, si on cherche les points à 350 m de l'entrée du collège, on doit chercher la distance correspondante sur la carte, on calcule :

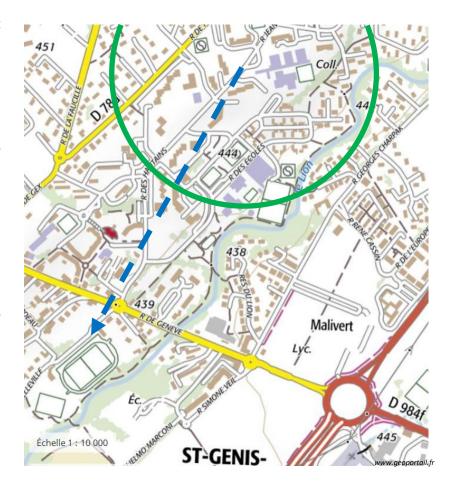
$$350 \times \frac{1}{10\,000} = 0,0350$$

Sur la carte, cela correspond à 0,035 m = 3,5 cm Ce sont donc tous les points sur le cercle vert.

L'échelle $\frac{1}{10000}$ signifie aussi que 1 cm sur la carte représente 10 00 cm = 100 m de la réalité. On aurait aussi pu la trouver avec un tableau de proportionnalité en utilisant 350 m = 35 000 cm

Carte	Réalité			
1 cm	10 000 cm			
?	35 000 cm			
$2 - \frac{1 \times 35\ 000}{1} - \frac{1}{3}$				

10 000 On retrouve le rayon de 3,5 cm.



Pour aller de l'entrée du collège au stade, il y a 8 cm (la flèche bleue pointillée). On peut déterminer la distance entre le collège et le stade :

Carte	Réalité	
1 cm	10 000 cm	
8 cm	?	
$? = \frac{8 \times}{}$	$\frac{10\ 000}{1} = 80$	000

Il y a 80 000 cm = 800 m pour aller du collège au stade.

Agrandissement

L'échelle est ici de $\frac{20}{1}$. Cela signifie que pour passer de la réalité à la photo, on a multiplié les distances par $\frac{20}{1}$. Cela signifie aussi que 20 cm sur la photo représentent 1 cm dans la réalité.

Pour connaître sa taille réelle, on la mesure sur la photo ; on trouve ici 8,6 cm.

Je calcule sa taille réelle :

Photo	Réalité	
20 cm	1 cm	
8,6 cm	?	
0.6.4		

$$? = \frac{8,6 \times 1}{20} = 0,43$$

La taille est donc de 0,43 cm = 4,3 mm.

