PUISSANCES de 10 et NOTATION SCIENTIFIQUE

Définition

Le nombre noté aⁿ qui se lit « a exposant n » est le produit de n facteurs tous égaux à a.

$$a^n = \underbrace{a \times a \times a \times ... \times a}_{\text{n facteurs}}$$

Exemples

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 32$$
 $3^4 = 3 \times 3 \times 3 \times 3 = 81$ $(-2)^3 = (-2) \times (-2) \times (-2) = -8$

Remarques

Astuce

La règle des signes s'applique pour le calcul des puissances.

Le signe de a^n est positif si :

- a est positif
- ou *a* est négatif et n est pair (0, 2, 4, 6, 8, 10 ...).

Le signe de a^n est négatif si : a est négatif et n est impair (1, 3, 5, 7, 9, 11 ...).

Exemples

4⁵ est positif

(-4)⁵ est négatif car il y a **5** facteurs négatifs.

(-10)8 est positif car il y a 8 facteurs négatifs.

Application

Parcours vert

Propriété de priorité opératoire - admise

Pour calculer une expression numérique, on procède selon l'ordre suivant :

- 1. On calcule l'intérieur des parenthèses. Si des parenthèses sont imbriquées (l'une dans l'autre), on commence par celles qui sont le plus à l'intérieur.
- 2. On calcule les puissances.
- 3. On effectue les multiplications et divisions.
- 4. On termine toujours par les additions et soustractions.

Exemple

$$4 \times 5^{2} \times (5 - 4 \times 3)$$

$$= 4 \times 5^{2} \times (5 - 12)$$

$$= 4 \times 5^{2} \times (-7)$$

$$= 4 \times 25 \times (-7)$$

$$= 100 \times (-7)$$

$$= -700$$

Attention à la position du signe "-" dans le calcul des puissances

$$(-2)^4 = 16 \operatorname{car} (-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = +16$$

 $-2^4 = -16 \operatorname{car} - 2^4 = -2 \times 2 \times 2 \times 2 = -16$
 $2^4 = 2 \times 2 \times 2 \times 2 = 16$

La puissance est prioritaire sur le signe "-" qui correspond à une soustraction. On calcule d'abord la puissance.

$$\underline{x^a \times x^b = x^{a+b}}$$
 S'i

S'il y a le même nombre en bas, on additionne les puissances

Exemples

$$\frac{2^3 \times 2^7 = 2^{3+7} = 2^{10}}{3^4 \times 3^7 = 3^{4+7} = 3^{11}} \qquad (-2)^3 \times (-2)^7 = (-2)^{3+7} = (-2)^{10}$$

"Justification"

Calcule

Mettre $2^3 \times 2^5$ sous la forme d'une seule puissance

$$2^3 \times 2^5 = 8 \times 32$$

= **256**

Le résultat est un nombre (entier ou décimal) ou une fraction

$$2^3 \times 2^5$$
= 2^8

Le résultat est une puissance

Propriété 2 - admise

$$(x^a)^b = x^{a \times b}$$

Si les puissances sont imbriquées, on multiplie les exposants.

Exemples

$$(2^3)^4 = 2^{3\times4} = 2^{12}$$

$$(10^2)^4 = 10^{2\times4} = 10^8$$

"Justification"

Remarque

$$10^{-4} = \frac{1}{10^4}$$

$$10^{-3} = \frac{1}{10^3}$$

$$10^{-2} = \frac{1}{10^2}$$

$$10^{-1} = \frac{1}{10^1}$$

Propriété 3 - admise

Si
$$x^{-1}$$
 0 alors $x^{0} = 1$

Exemples

$$4^0 = 1$$

$$(-4)^0 = 1$$

$$p^0 = 1$$

$$2,7^0 = 1$$
 $(-4,8)^0 = 1$

$$-9^0 = -1$$

Propriété 4 - admise

$$\underline{x^{-n}} = \frac{1}{x^n}$$

L'exposant négatif devient « 1 sur ... »

Exemples

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

$$\frac{5^{-3} = \frac{1}{5^3} = \frac{1}{125}$$

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8} \qquad 5^{-3} = \frac{1}{5^3} = \frac{1}{125} \qquad (-2)^{-5} = \frac{1}{(-2)^5} = \frac{1}{-32} = -\frac{1}{32}$$

Propriété - admise

Soit n un entier positif.

10ⁿ s'écrit avec un "1" suivi de n "0".

10⁻ⁿ s'écrit "0,0...01" avec n "0" au total en comptant celui avant la virgule.

Exemples

$$10^7 = 10000000$$

7 zéros

8 zéros

Définition

Un nombre est dit sous la forme scientifique (ou en notation scientifique) s'il s'écrit sous la forme : $a \times 10^n$ åæ

α est un nombre décimal dont la distance à zéro est supérieure n est un entier relatif (positif ou négatif) ou égale à 1 et strictement inférieure à 10 (il ne peut pas être égal à 10).

Exemples de nombres n'étant pas en notation scientifique

 10×10^{4} $1.5 \times 10^{4,2}$ 15 10^{3} 15×10^{4} 0.8×10^{4} Il manque ×10^{···} Il manque un Le nombre devant Le nombre devant Le nombre devant L'exposant n'est nombre devant est supérieur à 10. est égal à 10. n'est pas supérieur pas entier ou égal à 1.

Exemples de nombres étant sous la forme scientifique

 1×10^{4}

 $1,5 \times 10^{-5}$

 -1.5×10^{42}

 -9.5×10^{-12}

 -1.7×10^{0}

 1.5×10^{0}

Rappels

Si n est positif, multiplier par 10^n c'est décaler la virgule de n rangs vers la droite. Si n est positif, multiplier par 10^{-n} c'est décaler la virgule de n rangs vers la gauche.

Exemples de passage de la notation scientifique à la notation décimale.

$$4,52 \times 10^4 = 45200$$

$$-6 \times 10^4 = -60000$$

$$4,52 \times 10^{-4} = 0,000452$$

Exemples de passage de la notation décimale à la notation scientifique.

$$123,45 = 1,2345 \times 10^{2}$$

$$10^2 = 100$$

$$0.012345 = 1.2345 \times 10^{-2}$$

$$10^{-2} = 0.01$$

$$123,45 \times 10^5 = 1,2345 \times 10^2 \times 10^5 = 1,2345 \times 10^7$$

Remarque

Pour faire un calcul avec des nombres en notation scientifique (où apparaissent uniquement des quotients ou produits), on commence par regrouper les nombres décimaux et les puissances de 10.

Exemples

$$12 \times 10^4 \times 55 \times 10^8 = 12 \times 55 \times 10^4 \times 10^8 = 660 \times 10^{12} = 6.6 \times 10^2 \times 10^{12} = 6.6 \times 10^{14}$$

$$25 \times 10^{-14} \times (-400) \times 10^8 = 25 \times (-400) \times 10^{-14} \times 10^8 = -10000 \times 10^{-6} = -1 \times 10^4 \times 10^{-6} = -1 \times 10^{-2}$$

$$0,0055 \times 10^7 \times 2 \times 10^8 = 0,0055 \times 2 \times 10^7 \times 10^8 = 0,011 \times 10^{15} = 1,1 \times 10^{-2} \times 10^{15} = 1,1 \times 10^{13}$$

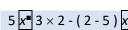
$$\frac{45 \times 10^{23} \times 24 \times 10^{-4}}{18 \times 10^{5}} = \frac{45 \times 24}{18} \times \frac{10^{23} \times 10^{-4}}{10^{5}} = \frac{1080}{18} \times \frac{10^{19}}{10^{5}} = 60 \times 10^{14} = 6 \times 10^{14} \times 10^{14} = 6 \times 10^{15}$$

Utilisation de la calculatrice

Pour calculer avec des puissances on utilise la touche :

Dans la suite, on nommera x ■ cette touche.

Pour calculer $5^3 \times 2 - (2-5)^4$ on tape $5 \times 3 \times 2 - (2-5) \times 4$ et on trouve 169.



Pour calculer avec des puissances on utilise la touche :

×10[■] ×10^x ×10ⁿ

Dans la suite, on nommera ×10 cette touche. Elle remplace l'appui sur les touches ×10 x

Pour calculer $12 \times 10^4 \times 55 \times 10^8$ on tape $12 \times 10^4 \times 55 \times 10^8$ et on trouve 6,6 ′ 10^{14} .